
Page 1 of 10

Using a CCDT in JSON with SSL/TLS with an IBM MQ client using Python PyMQI

https://www.ibm.com/support/pages/node/6955621

Date last updated: 14-Feb-2023

Angel Rivera

IBM MQ Support
https://www.ibm.com/products/mq/support

Find all the support you need for IBM MQ

+++ Objective +++

The objective of this tutorial is to describe how to use a CCDT in JSON with SSL/TLS with an
IBM MQ client program that uses Python PyMQI: simple-mqput.py

The approach taken here is conservative and gradual. The idea is to begin with a solid
baseline and subsequent steps are discreet and narrow in scope. In case that there is an
error, it needs to be fixed before taking the next step.
Why? Because if you try to implement everything at once and then you encounter an error,
where do you begin the troubleshooting task? And the answer to this rhetorical question is:
well, it is difficult to troubleshoot such scenario when there are many possible candidates!

One important aspect to consider is that the MQ Client application (C-based or Python
PyMQI) does NOT need to be aware if SSL is being used or not used: the underlying MQ
client shared-libraries are the ones that will handle the SSL aspects!
Of course, the configuration of the SSL certificates and SSL-enabled channels need to be
done by the user and the MQ administrator, and this is the part that is the most confusing to
do correctly.

+ Strategy

Only when you can run successfully the MQ sample amqsputc as described in the tutorial
about amqsputc then you can proceed to test with your Python PyMQI client application.

First, we need to ensure that non-SSL server-connection channels can be used with the MQ
simple PyMQI client application "simple-mqput.py", beginning with using only the simple
environment variable MQSERVER and then a CCDT in JSON that does not use SSL.

Secondly, only after all errors encountered with the first step are fixed, then we test the
SSL/TLS server-connection channel using an CCDT in JSON that uses SSL.

At this point, if simple-mqput.py can run successfully but if your more complex PyMQI
client application encounters errors, then these errors will most likely be contained with
that client application and not with the certificates, the SSL channel, and the CCDT.

https://www.ibm.com/support/pages/node/6955621
https://www.ibm.com/products/mq/support

Page 2 of 10

+ Requirements:

This document is in reality "Part 2", which has as a requirement the tasks mentioned in the
following tutorial (which is "Part 1").
You should be able to successfully run the MQ sample amqsputc, which is C-based, with the
CCDT in JSON:
 https://www.ibm.com/support/pages/node/6955535
 Using a CCDT in JSON with SSL/TLS with the IBM MQ sample amqsputc

You must install Python and PyMQI and do basic verification tasks.
 https://www.ibm.com/support/pages/node/6856737
 How to install Python IBM MQ module PyMQI in Linux and Windows

+ Configuration:

The configuration for this tutorial is exactly as the one described in:
 https://www.ibm.com/support/pages/node/6955535
 Using a CCDT in JSON with SSL/TLS with the IBM MQ sample amqsputc

Please consult the above tutorial to see the contents of the CCDT JSON files.

+ PyMQI program: simple-mqput.py

The Python program that is available at the web page in the cover pager, below the title, is
called "simple-mqput.py" and it is not complex, but it is complete enough to be a usesful
test for confirming the workings of the PyMQI module to server as an MQ Client application
to connect to a queue manager.

There are 3 important points about this program:

1) To allow for the MQ client shared libraries to do remote connections, it is CRITICAL to
setup the following environment variable:
 export MQ_CONNECT_TYPE=CLIENT

2) You must use the methods highlighted below. This will tell the MQ client shared libraries
to do the proper handling of MQSERVER and the CCDT JSON files.

 queue_manager = pymqi.QueueManager(None)
 queue_manager.connect_with_options(queue_manager_name)

3) For simple situations, there is no need to add complicated code in your program for
handling SSL. The SSL attributes in the CCDT in JSON can be easily specified and modified.
Then, let the MQ client shared libraries handle the underlying complexity!

https://www.ibm.com/support/pages/node/6955535
https://www.ibm.com/support/pages/node/6856737
https://www.ibm.com/support/pages/node/6955535

Page 3 of 10

++ Section 1: Host-2, Linux Client, using MQSERVER

You need to set the following environment variable in order to allow remote connections:
$ export MQ_CONNECT_TYPE=CLIENT

Let's set the MQSERVER environment variable (cannot use SSL with it):
$ export MQSERVER='NON.SSL.SVRCONN/TCP/volterra1.fyre.ibm.com(1419)'

Let's unset the other connectivity environment variables:
$ unset MQCLNTCF
$ unset MQCHLLIB
$ unset MQCHLTAB

Let's not pass any arguments and let's see the usage syntax:

$ python3 simple-mqput.py
usage: Put message into Queue in Queue Manager [-h] -q Q -m M [-c C]
 [--host HOST] [--port PORT]
 [--msg MSG] [--verbose]
Put message into Queue in Queue Manager: error: the following arguments are required: -q,
-m

Let's specify the queue and the queue manager.
If a message is not specified as argument, the program uses a default.

$ python3 simple-mqput.py -q Q1 -m QM93TLS
2023-02-14 13:48:53,763 INFO : Put message was successful: Hello from Python!

Let's try again, but this time with a message and with --verbose

$ python3 simple-mqput.py -q Q1 -m QM93TLS --msg "From simple-mqput.ph" --verbose
2023-02-14 13:51:19,772 DEBUG : Starting: simple-mqput
2023-02-14 13:51:19,773 DEBUG : Namespace(c='SYSTEM.DEF.SVRCONN', host='localhost',
m='QM93TLS', msg='From simple-mqput.ph', port='1414', q='Q1', verbose=True)
2023-02-14 13:51:19,773 DEBUG : Queue: Q1 QMgr: QM93TLS Channel:
SYSTEM.DEF.SVRCONN
2023-02-14 13:51:19,773 DEBUG : Host: localhost Port: 1414 Host_port: localhost(1414)
2023-02-14 13:51:19,773 DEBUG : Message text: From simple-mqput.ph
2023-02-14 13:51:19,773 DEBUG : mq_connect_type, MQ_CONNECT_TYPE : CLIENT
2023-02-14 13:51:19,773 DEBUG : mq_server, MQSERVER :
NON.SSL.SVRCONN/TCP/volterra1.fyre.ibm.com(1419)
2023-02-14 13:51:19,774 DEBUG : mq_client_config, MQCLNTCF : None
2023-02-14 13:51:19,774 DEBUG : mq_ccdt_path, MQCHLLIB : None
2023-02-14 13:51:19,774 DEBUG : mq_ccdt_file, MQCHLTAB : None
2023-02-14 13:51:19,798 DEBUG : Connection successful.
2023-02-14 13:51:19,798 DEBUG : Open queue was successful.

Page 4 of 10

2023-02-14 13:51:19,800 DEBUG : Put was successful.
2023-02-14 13:51:19,801 DEBUG : Closing queue was successful.
2023-02-14 13:51:19,802 DEBUG : Disconnect was successful.
2023-02-14 13:51:19,802 INFO : Put message was successful: From simple-mqput.py
2023-02-14 13:51:19,803 DEBUG : Ending: simple-mqput

Let's open a terminal with the host that has the queue manager and let's get the messages.
Notice that it shows the 2 messages that we just put!

mqm@volterra1.fyre.ibm.com: /home/mqm
$ amqsget Q1 QM93TLS
Sample AMQSGET0 start
message <Hello from Python!>
message <From simple-mqput.py>

Page 5 of 10

++ Section 2: Host-2, Linux Client, using CCDT in JSON without SSL

Let's proceed to use a CCDT in JSON that invokes a channel that does not use SSL.

Location: /var/mqm/ssl
File name: ccdt-QM93TLS-volterra1-nonssl.json

The contents will be:
+ begin contents (ignore this line)
{

 "channel": [

 {

 "name": "NON.SSL.SVRCONN",

 "clientConnection": {

 "connection": [

 {

 "host": "volterra1.fyre.ibm.com",

 "port": 1419

 }

],

 "queueManager": "QM93TLS"

 },

 "type": "clientConnection"

 }

]

}

+ end contents (ignore this line)

Now you MUST unset the environment variables MQSERVER and MQCLNTCF.

$ unset MQSERVER
$ unset MQCLNTCF

Proceed to set the following 2 environment variables that provide the full path of the CCDT
file:
$ export MQCHLLIB=/var/mqm/ssl
$ export MQCHLTAB=ccdt-QM93TLS-volterra1-nonssl.json

Notice that you need to have the environment variable that points to the key repository:
$ export MQSSLKEYR=/var/mqm/ssl/clientkey

OK, let's confirm that we have the proper environment variables:

$ set | grep MQ
MQCHLLIB=/var/mqm/ssl
MQCHLTAB=ccdt-QM93TLS-volterra1-nonssl.json
MQSSLKEYR=/var/mqm/ssl/clientkey
MQ_CONNECT_TYPE=CLIENT

Page 6 of 10

Now, let's run the program again, with verbose mode and with a message.

$ python3 simple-mqput.py -q Q1 -m QM93TLS --msg "simple-mqput.py, CCDT JSON non
SSL" --verbose
2023-02-14 13:58:44,704 DEBUG : Starting: simple-mqput
2023-02-14 13:58:44,704 DEBUG : Namespace(c='SYSTEM.DEF.SVRCONN', host='localhost',
m='QM93TLS', msg='simple-mqput.py, CCDT JSON non SSL', port='1414', q='Q1', verbose=True)
2023-02-14 13:58:44,704 DEBUG : Queue: Q1 QMgr: QM93TLS Channel:
SYSTEM.DEF.SVRCONN
2023-02-14 13:58:44,705 DEBUG : Host: localhost Port: 1414 Host_port: localhost(1414)
2023-02-14 13:58:44,705 DEBUG : Message text: simple-mqput.py, CCDT JSON non SSL
2023-02-14 13:58:44,705 DEBUG : mq_connect_type, MQ_CONNECT_TYPE : CLIENT
2023-02-14 13:58:44,705 DEBUG : mq_server, MQSERVER : None
2023-02-14 13:58:44,705 DEBUG : mq_client_config, MQCLNTCF : None
2023-02-14 13:58:44,705 DEBUG : mq_ccdt_path, MQCHLLIB : /var/mqm/ssl
2023-02-14 13:58:44,705 DEBUG : mq_ccdt_file, MQCHLTAB : ccdt-QM93TLS-
volterra1-nonssl.json
2023-02-14 13:58:44,729 DEBUG : Connection successful.
2023-02-14 13:58:44,729 DEBUG : Open queue was successful.
2023-02-14 13:58:44,733 DEBUG : Put was successful.
2023-02-14 13:58:44,734 DEBUG : Closing queue was successful.
2023-02-14 13:58:44,735 DEBUG : Disconnect was successful.
2023-02-14 13:58:44,735 INFO : Put message was successful: simple-mqput.py, CCDT
JSON non SSL
2023-02-14 13:58:44,736 DEBUG : Ending: simple-mqput

Let's check the queue manager:

mqm@volterra1.fyre.ibm.com: /home/mqm
$ amqsget Q1 QM93TLS
Sample AMQSGET0 start
message <simple-mqput.py, CCDT JSON non SSL>

Page 7 of 10

++ Section 3: Host-2, Linux Client, using CCDT in JSON with SSL

Finally, let's use a CCDT with JSON that uses SSL:

Location: /var/mqm/ssl
File name: ccdt-QM93TLS-volterra1-linux-ssl.json

The contents will be:
+ begin contents (ignore this line)
{

 "channel": [

 {

 "name": "SSL.SVRCONN.LNX",

 "clientConnection": {

 "connection": [

 {

 "host": "volterra1.fyre.ibm.com",

 "port": 1419

 }

],

 "queueManager": "QM93TLS"

 },

 "transmissionSecurity":

 {

 "cipherSpecification": "TLS_AES_128_GCM_SHA256",

 "certificateLabel": "ibmwebspheremqmqm",

 },

 "type": "clientConnection"

 }

]

}

+ end contents (ignore this line)

Proceed to set the following 1 environment variable that provides the file name.
$ export MQCHLTAB=ccdt-QM93TLS-volterra1-linux-ssl.json

python3 simple-mqput.py -q Q1 -m QM93TLS --msg "simple-mqput.py, CCDT JSON with SSL" -
-verbose
2023-02-14 14:01:48,715 DEBUG : Starting: simple-mqput
2023-02-14 14:01:48,716 DEBUG : Namespace(c='SYSTEM.DEF.SVRCONN', host='localhost',
m='QM93TLS', msg='simple-mqput.py, CCDT JSON with SSL', port='1414', q='Q1',
verbose=True)
2023-02-14 14:01:48,716 DEBUG : Queue: Q1 QMgr: QM93TLS Channel:
SYSTEM.DEF.SVRCONN
2023-02-14 14:01:48,716 DEBUG : Host: localhost Port: 1414 Host_port: localhost(1414)
2023-02-14 14:01:48,716 DEBUG : Message text: simple-mqput.py, CCDT JSON with SSL
2023-02-14 14:01:48,717 DEBUG : mq_connect_type, MQ_CONNECT_TYPE : CLIENT
2023-02-14 14:01:48,717 DEBUG : mq_server, MQSERVER : None
2023-02-14 14:01:48,717 DEBUG : mq_client_config, MQCLNTCF : None

Page 8 of 10

2023-02-14 14:01:48,717 DEBUG : mq_ccdt_path, MQCHLLIB : /var/mqm/ssl
2023-02-14 14:01:48,717 DEBUG : mq_ccdt_file, MQCHLTAB : ccdt-QM93TLS-
volterra1-linux-ssl.json
2023-02-14 14:01:48,859 DEBUG : Connection successful.
2023-02-14 14:01:48,860 DEBUG : Open queue was successful.
2023-02-14 14:01:48,863 DEBUG : Put was successful.
2023-02-14 14:01:48,865 DEBUG : Closing queue was successful.
2023-02-14 14:01:48,868 DEBUG : Disconnect was successful.
2023-02-14 14:01:48,869 INFO : Put message was successful: simple-mqput.py, CCDT
JSON with SSL
2023-02-14 14:01:48,869 DEBUG : Ending: simple-mqput

Let's get the message from the queue manager:

mqm@volterra1.fyre.ibm.com: /home/mqm
$ amqsget Q1 QM93TLS
Sample AMQSGET0 start
message <simple-mqput.py, CCDT JSON with SSL>

Page 9 of 10

+ Confirmation test:

You may think at this point… hum, how can I be sure that the CCDT with JSON with SSL is
actually being used?

One easy way to test is to introduce a typo graphical error with the cipherspec in the file,
which will cause a runtime error.

Instead of the valid original value of:
"certificateLabel": "ibmwebspheremqmqm",

Let's remove the last "m" in the label:
"certificateLabel": "ibmwebspheremqmq",

At runtime, the MQ client shared libraries will try to get the incorrect label from the key
repository and will fail:

$ python3 simple-mqput.py -q Q1 -m QM93TLS --msg "simple-mqput.py, CCDT JSON with
SSL" --verbose
2023-02-14 14:05:48,046 DEBUG : Starting: simple-mqput
2023-02-14 14:05:48,046 DEBUG : Namespace(c='SYSTEM.DEF.SVRCONN', host='localhost',
m='QM93TLS', msg='simple-mqput.py, CCDT JSON with SSL', port='1414', q='Q1',
verbose=True)
2023-02-14 14:05:48,046 DEBUG : Queue: Q1 QMgr: QM93TLS Channel:
SYSTEM.DEF.SVRCONN
2023-02-14 14:05:48,046 DEBUG : Host: localhost Port: 1414 Host_port: localhost(1414)
2023-02-14 14:05:48,046 DEBUG : Message text: simple-mqput.py, CCDT JSON with SSL
2023-02-14 14:05:48,046 DEBUG : mq_connect_type, MQ_CONNECT_TYPE : CLIENT
2023-02-14 14:05:48,046 DEBUG : mq_server, MQSERVER : None
2023-02-14 14:05:48,046 DEBUG : mq_client_config, MQCLNTCF : None
2023-02-14 14:05:48,046 DEBUG : mq_ccdt_path, MQCHLLIB : /var/mqm/ssl
2023-02-14 14:05:48,047 DEBUG : mq_ccdt_file, MQCHLTAB : ccdt-QM93TLS-
volterra1-linux-ssl.json
2023-02-14 14:05:48,187 ERROR : Cannot connect to queue manager: QM93TLS - error:
MQI Error. Comp: 2, Reason 2393: FAILED: MQRC_SSL_INITIALIZATION_ERROR
Traceback (most recent call last):
 File "simple-mqput.py", line 84, in <module>
 queue_manager.connect_with_options(queue_manager_name)
 File "/usr/local/lib64/python3.6/site-packages/pymqi/__init__.py", line 1747, in
connect_with_options
 raise MQMIError(rv[1], rv[2])
pymqi.MQMIError: MQI Error. Comp: 2, Reason 2393: FAILED:
MQRC_SSL_INITIALIZATION_ERROR
MQI Error. Comp: 2, Reason 2393: FAILED: MQRC_SSL_INITIALIZATION_ERROR

Page 10 of 10

Then we can take a look at the general error log at:
 /var/mqm/errors//AMQERR01.LOG
… and we see:

02/14/2023 02:05:48 PM - Process(276930.1) User(mqm) Program(python3)
 Host(suvereto1.fyre.ibm.com) Installation(Installation1)
 VRMF(9.2.0.6)
 Time(2023-02-14T22:05:48.185Z)
 RemoteHost(9.46.80.212)
 CommentInsert1(SSL.SVRCONN.LNX)
 CommentInsert2(volterra1 (9.46.80.212)(1419))
AMQ9642E: No SSL or TLS certificate for channel 'SSL.SVRCONN.LNX'.
EXPLANATION:
The channel 'SSL.SVRCONN.LNX' did not supply a certificate to use during SSL or
TLS handshaking, but a certificate is required by the remote queue manager.
The remote host is 'volterra1 (9.46.80.212)(1419)'.
The channel did not start.
ACTION:
Ensure that the key repository of the local queue manager or MQ client contains
a certificate which is associated with the queue manager or client. If you have
configured a certificate label, check that the certificate exists.
Alternatively, if appropriate, change the remote channel definition so that its
SSLCAUTH attribute is set to OPTIONAL and it has no SSLPEER value set.

+++ end +++

